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Abstract. The Russo-Ukrainian war and the deterioration of the relationship between
Russia and the West made the application of traditional social science research
methods, such as surveys and fieldwork, difficult for researchers. Itis likely that in the
foreseeable future students of Russia will have to increasingly rely on the data that can
be collected online. Using these data has defined the field of computational social
science and has many analytical advantages and come limitations. This paper provides
a review of the sources of digital trace data for Russia and of the studies that used them
for the analysis of political communication and behaviour, education, labour markets,
discrimination, and the Russo-Ukrainian war.
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In the last decade, the methodological landscape of the social sciences has changed
rapidly. Traditionally, qualitative social scientists conducted fieldwork to collect
interviews and engage in participant observation. Quantitative social scientists often
worked with survey data or, more rarely, implemented field experiments. These
methods, of course, remain valid and are still used in most of the social science
research. However, much of our everyday life activity (communication, shopping,
cultural consumption, interaction with the state and service providers, etc.) has now
moved online. These activities leave behind digital trace data that are sometimes
available for social research. The proliferation of digital trace data and the new
methodological opportunities offered by online communication and activities have led
to the emergence of the new interdisciplinary field of computational social science
(CSS), at the intersection of social sciences and computer science.

In a review of the CSS approaches in sociology, Edelmann et al. (2020) define the CSS
as follows: “Computational social science is an interdisciplinary field that advances
theories of human behavior by applying computational techniques to large datasets
from social media sites, the Internet, or other digitized archives such as administrative
records” (p.62). Therefore, the focus is on methodology (“computational techniques”,
as opposed to more traditional statistical analysis) and data sources (large data sets
collected online and perhaps administrative data). In practice, the boundary between
'traditional' quantitative social science and CSS has become somewhat blurred,
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especially as digital methods find their way into the toolbox of social scientists who
were not specifically trained in CSS.

Salganik (2018) in his pioneering textbook on the CSS provides a classification of the
most popular research designs / strategies. First, these are new ways of observing
human behaviour, using data that were not specifically created for the purpose of
research (unlike traditional survey data). These can be data collected online (from the
social media, internet search engines, digitised archives, etc.), but also data from
mobile phone networks, supermarkets and online marketplaces, other service
providers, as well as large administrative data collected by the governments. These data
can be used then for providing more precise estimates of unknown quantities (‘counting
things’, as Salganik described it), as well as for forecasting and approximating natural
experiments.

Another CSS approach is using the internet for survey research. Obviously online
surveys and panels are now a common place in the polling and market research
industry, as well as in academic research. The innovation brought by the CSS is linking
survey data with large online observational data sets (such as for example the social
media data) enhancing them with new information and then potentially training
machine learning models with the enhanced data to use them for prediction with the
original observational data. Generally, machine learning (including more recently the
large language models) has become one of the main methodological tools in the CSS-
orientated social sciences (see Grimmer, Roberts, and Stewart 2021; Molina and Garip
2019).

Finally, according to Salganik’s classification, there are experimental designs where
experiments are conducted online (either using existing environments or tailor-made
apps) and mass collaborations for distributed data collection and coding. To this list of
tools, we could add social network analysis (a long-established field, however, recently
enhanced by access to large network data and new computational approaches) and
agent-based modelling.

In this paper, | will provide a review of the empirical studies that used CSS approaches
and digital trace data to study Russia (see Koltsova, Porshnev, and Sinyavskaya (2021)
for an alternative review of the studies that used data from the social media and La Lova

studies). | will start with describing the available data sources, and then continue with
reviewing the studies of education, labour markets, political communication and
behaviour. In a separate section, | review the studies related to the Russo-Ukrainian war.

This paper aims to make several contributions. First, it provides an overview of the
sources of digital trace data available for Russia (at the time of writing in late 2024 -
early 2025). Second, it reviews empirical studies that used these data across various
disciplines, such as political communication, educational studies, labour economics,
sociology, and others. Researchers working in these areas are not always aware of the
studies conducted in the neighbouring disciplines, and hopefully a cross-disciplinary
review will be useful for them. The review can also serve as an introduction to available



data sources and methodological approaches for researchers of Russia who are not yet
familiar with CSS. | mainly focus on data and methods that were used in empirical
studies rather than theories and substantive conclusions. Third, the review discusses
the future of digital methods in the Russian studies in the context of the Russo-
Ukrainian war and increasingly repressive nature of the Russian state.

Data sources

Using digital trace data in social research provides some unique advantages: these data
are bigger, produced in real time, and often directly reflect human behaviour. There are
disadvantages, too: the data are incomplete (both in the sense of population coverage
and missing information), biased, and not always available (see Salganik (2018) and
Lazer and Radford (2017) for a more detailed discussion). Normally, we can
complement these data sources with more traditional quantitative and qualitative data
collected specifically for the purpose of research.

However, in authoritarian regimes in general, and in Russia after 2022 in particular,
digital data may become indispensable (Kalsaas 2023). It is much more difficult now for
Western-based researchers to conduct fieldwork in Russia. Access to the country is
limited, risks are high, research trips are unlikely to be approved by ethics committees
and IRBs, not to mention potential interference of the Russian authorities. It is also
much more difficult to commission surveys in Russia. Currently many pollsters in
Russia would not work with projects that are even vaguely political and have Western
funding, especially if there are questions related to the war. Paying to Russian partners
for data collection from outside Russia is complicated by international sanctions. There
are still some on-going surveys with the data accessible for Western researchers. For
example, the Russian Longitudinal Monitoring Survey conducted by the HSE University
(https://www.hse.ru/en/rlms/) recently released the data for 2022-23. The questionnaire
even includes some questions on how people’s lives changed after the beginning of the
‘special military operation’ in Ukraine, although the question on the attitudes towards it
is missing. In this context, using digital trace data that can be collected online from
outside of Russia is often the only viable research strategy for Western-based
academics and analysts. At some point the war will end and collecting data in Russia
will likely become easier, but unless there are dramatic political changes, it is hard to
envisage going back to the pre-2022 level of access.

What kind of data are available? First, these are data from the Russian social media,
such as VK. VK is the largest and most popular social media website in Russia, having
about 89 million people as its monthly audience (as of 2024). It is generally similar to
Facebook: users can add other people as ‘friends’, write, share and comment on posts,
create groups, as well as listen to the music, watch videos, play games, etc. Unlike
Facebook that closed unrestricted data access after the Cambridge Analytica scandal,
VK still provides ample opportunities for data collection (at the time of writing in 2025).
It is possible, for example, to collect information about users from a particular group or
a particular city, search users by name, download posts for users and groups, etc.



Another data source is Yandex, a search engine competing in Russia with Google. The
Wordstat Yandex service, mostly developed for advertisers, allows users to collect
statistics on search terms over time (both the number and the proportion of search
requests), disaggregated at the regional and city level. The Yandex.Audience service
allows for estimating the number of Yandex users in a particular location (that can be
specified in a very precise way) potentially letting researchers trace population
movements. Similar data from Facebook and other digital services were used by
demographers in other countries (see Leasure et al. (2023) for a study of population
displacement in Ukraine with Facebook data).

Telegram, a messaging app popular worldwide and in particular in Russia, has an
application programming interface (API) that allows automatically downloading
messages from public channels that have become especially popular since the start of
the Russo-Ukrainian war in 2022.

YouTube is still one of the most popular web services in Russia, despite the attempts of
the Russian authorities to limit its use. It is possible to collect statistics on the most
popular videos in different categories, the number of views for videos, and
automatically download comments, using packages developed both for R and Python.

Table 1 provides an overview of the most popular sources of digital trace data for
Russia. Inthe following sections, | review examples of using these and other data for

empirical social research.

Table 1. Main sources of digital trace data for Russia

Name URL API R/Python Notes Examples
packages / API of research
wrappers

VK https://vk | https://dev.vk. | R: vkR, The largest Bessudnov

.com com/en/meth | R:rvkstat, social media etal.
od Python: vk-api | website in (2023);
Russia, with a Rykov,
well-developed | Koltsova,
API. and
Sinyavskay
a (2020);
Sivak and
Smirnov
(2019);
Smirnov
(2020);
Sokolova
(2023)
Odnoklassni | https://ok | https://apiok.r The second
Ki .ru/ u/en/ largest social
media website.




The APl is less
developed and
less useful for
social research.

Telegram https://tel | https://core.te | R:telegram, An instant Kuznetsova
egram.org | legram.org R:telegram.bot, | messaging tool (2024);
Python: popularin Urmanand
python- Russia. The APl | Katz (2022)
telegram-bot, is of limited use
Python: for social
Telethon researchers, but
it allows
automatically
downloading the
content of
groups /
channels.
TikTok https://w | https://develo | R: traktok, A popular social | Bésch and
ww.tiktok. | pers.tiktok.co | Python: Pyktok, | media website. Divon
com m/products/r | Python: TikTok- | The Research (2024);
esearch-api/ | Api, APl is available Molotov
Python:TikTokA | for researchers and
pi inthe USA, EEA, | Khlevniuk
UK and (2024);
Switzerland, Primig,
after project Szabd, and
authorisation. Lacasa
(2023)
YandexWord | https://w | https://yande | R: The largest Anastasiad
stat ordstatya | x.com/dev/dir | ryandexdirect, Russian search ou, Volgin,
ndex.com | ect/doc/dg- Python:Yandex | engine word and
vd/en/ WordstatAPI search statistics | Leasure
and trends. (2024)
Google https://tre R:gtrendsR, R: | Word search
Trends nds.googl gtrendsAPI, statistics from
e.com/tre Python:pytrend | Google.
nds/ s
Yandex.Audi | https://au | https://yande Allows
ence dienceya | x.com/dev/au estimating the
ndex.com | dience size of the
Yandex
audience,
including by fine
grained location.
Youtube https://w | https://develo | R:tuber, Search and Bodrunova
ww.youtu | pers.google.c | Python: download etal.
be.com python- information (2021)




om/youtube/v | youtube, about Youtube
3 Python: videos,
youtube-data- | download
api comments.
Twitter / X https://x.c | https://develo | R:rtweet, The APl has been | Chen and
om per.x.com/en/ | Python: Tweepy | widely used in Ferrara
products/x- social research, | (2023);
api but currently Stukal et
requires payinga | al. (2017,
large fee for data | 2022)
collection.

Notes: All the information in this table is as of February 2025.

Education, social capital, labour market, discrimination

The VK’s APl allows users to search user accounts and collect information by school
and university, making it a good data source for educational research. To show the
reliability of VK data, Smirnov, Sivak, and Kozmina (2016) matched the data obtained
directly from a Moscow school and a Moscow university with the data found on VK.
Using a variety of methods, they were able to find VK accounts of 88% of the school
students and 93% of the university students (although direct matching by full name was
only successfulin 18% of the cases). Using the same data, Smirnov and Thurner (2017)
analysed the evolution of student networks over time (where links between students
were operationalised as ‘likes’ they left on each other’s VK pages) and showed that they
changed their friends following changes in the academic performance, and not the
other way round. Another study involved using the VK data to look at the school
segregation in the digital space (Smirnov 2019).

Often the most interesting research findings result from a combination of digital and
survey data. The Educational and Career Trajectories survey (TrEC,
https://trec.hse.ru/en/) is a longitudinal study of young people that started in 2011 when
students were in 8" grade (Malik 2019). By 2021, ten waves of data were collected. The
study included the results of the international mathematics and reading assessments:
TIMSS (Trends in International Mathematics and Science Study) and PISA (Programme
for International Student Assessment). Additionally, participants were asked for
consent to using data from their social media profiles for research purposes. Smirnov
(2018, 2020) used data on VK public page subscriptions and VK posts to reasonably
accurately predict student performance in PISA tests. Note that once the model has
been built with the TrEC sample it can be extended to all VK users of school age,
although the predictive power of such models is generally low. Using VK public posts,
Sivak and Smirnov (2019) demonstrated that parents in Russia mention their sons more

(2024) on gender stereotyping in the films released in Russia in 2008-19 with the data

collected online on Kinopoisk, a Russian online film data base).



In another application of VK data, Alexandrov et al. (2018) looked at educational
migration from Russia showing links between the Russian Far East and Siberia and
China, the Russian North West and Nordic countries, and the North Caucasus and

(about 200,000 users and 10 million links between them) to analyse social capital
(defined via social network characteristics) in a medium sized city. Note that this type of
research would be impossible with virtually any other social media where the
opportunities for data collection are much more restricted. Rykov, Meylakhs, and

communication pattern of VK users looking at the volume and stability of
communication over time.

media posts, using both human coders from Toloka.ai (more on this below) and GPT
models to annotate the training data set, A similar approach was previously used by

names, with the data on names collected on VK and processed on Toloka.

Studies of the Russian labour market using online data are rarer. Job search and
recruitment in Russia are now often conducted online (Roshchin, Solntsev, and Vasilyev
2017) using such websites as Headhunter, Superjob, and others. Both Headhunter and
Superjob have APls, but they were largely developed for employers and applicants, and
the amount of information publicly available for researchers is limited. As an interesting
exception, Shevchuk, Strebkov, and Tyulyupo (2021) scraped data from FL.ru, the
largest website for freelance workers, to describe work patterns of freelancers in
Russia. Bessudnov and Shcherbak (2020) used Superjob and Headhunter to conduct a
field experiment to study ethnic discrimination in the labour market. While the
experiment was partially conducted offline the websites were used to create the
profiles of fictitious job applicants, respond to job ads and interact with the employers.

Cian.ru is the largest Russian website for real estate sales and rentals. Avetian (2022)
and Veterinarov and Ivanov (2018) used a similar research design to study ethnic
scraped rental ads from Cian.ru and looked at the proportions and characteristics of
ads where the discriminatory language was used (such as “for Slavs only” etc.). (In
2022, Cian.ru banned the use of discriminatory language in rental ads.) Bodrunova et al.
(2017) applied topic modelling to over 360,000 posts automatically collected in 2013



from Livejournal.com (a blogging platform popular in Russia in the 2000s-2010s) and
analysed the characteristics of the xenophobic and anti-migrant discourse on the social

Applications of scraped data for criminological research include the study of Hydra, a
darknet marketplace for drugs shut down in 2022 (Goonetilleke, Knorre, and Kuriksha
2023), and the study of sentencing disparities in Russian criminal courts based on a
data set that includes about 3 million criminal cases from 2009 to 2013 (Volkov 2016).

Political communication and behaviour

A large body of research with the social media data is devoted to political
communication and preferences. Most of it used data from Twitter / X that until 2023
had an API allowing for ample opportunities for data collection (in 2023, under Elon
Musk, those opportunities were severely restricted) (see Murthy (2024) for a review of
data collection on Twitter / X). Given public attention to the Russian interference in the
2016 US election, it is unsurprising that several studies looked at Russian political bots /
trolls on Twitter. Stukal et al. (2017) suggested a methodology for detecting bots on
Twitter with the data from 2014-15. Stukal et al. (2019) proposed a machine learning
classifier to detect political orientation of the bots (identifying 35% as pro-Kremlin, 18%
as pro-opposition, 18% as pro-Ukrainian, and remaining 29% as neutral). In a paper
published in the American Political Science Review, Stukal et al. (2022) used about 32
million tweets about Russian politics in Russian from 1.4 million Twitter users in 2015-
18 to show that pro-Kremlin bots were primarily employed to control the Russian online
domestic political agenda rather than to react to offline events and protests of the
opposition.

Other examples of research on Russia with Twitter / X data include Badawy, Ferrara, and
the online behaviour of the US Twitter users, Filer and Fredheim (2016) comparing
Twitter narratives about the murders of the special prosecutor Alberto Nisman in
Argentina and the Russian oppositional politician Boris Nemtsov, Zherebtsov and
Goussev (2021) mapping the Russian political Twitter applying social network analysis

Moscow protests.

While research with Twitter data dominates the field of online political communication
itis perhaps less relevant for the study of Russian domestic politics. According to the
Levada Centre data, only about 3% of the Russian adult population used Twitter in
2021, and in 2024 the Twitter / X penetration decreased to 1%. This compares with 50%
for VK, 37% for Youtube, 25% for Odnoklassniki and 20% for Tik Tok (as of March 2024)
(Levada 2024).

Examples of using data other than from Twitter for the study of political communication



study public agenda and Koltsova and Shcherbak (2015) exploring political preferences
VK users to find out that only about 15% of them followed any of the major Russian
news media sources on VK and applied social network analysis to study political

study was not focussed on Russia, but it shows the methodological potential of using
data from Telegram that is the second most popular messenger in Russia (after

videos on the Moscow 2019 protests. A number of studies used Yandex.News and
Yandex search data to explore potential biases in Yandex output, often comparing it to
Google (Erbsen and Poldre 2023; Kravets and Toepfl 2022; Makhortykh, Urman, and
Wijermars 2022). Other studies relied on the data from traditional media (such as TV
channels and newspapers), either scraped online or purchased from archives such as
Integrum (Lankina and Watanabe 2017; Otlan et al. 2023; Rozenas and Stukal 2019).

Another strand of research looked at the effect of social media on political behaviour. In
(2020) showed that higher penetration of VK increased the probability of a protestin a
city during the protest wave in December 2011 and also increased the number of
protesters, most likely by boosting the opportunities for online political communication
rather than by providing critical information about the government. They applied a
sophisticated identification strategy to disentangle the causal effect of VK penetration
using the information on the city of origin of students who studied together with the VK
founder (and thus were VK’s early adopters) as an instrument. The study was not
exclusively based on online data (although the authors collected the information on the
city of origin of all VK users who joined the social media before 2011, as well as the data
from Odnoklassniki and Facebook, and analysed the content of all posts made on VK
before the 2011 election), but also used a manually collected data set on political
protestsin 2011-12, a large survey and official statistics from the census. The
combination of digital trace and traditional survey data is often a feature of high-quality
design and identification strategy to study the effects of VK penetration on xenophobia
showing that it increased the share of people holding xenophobic attitudes and led to
more hate crimes in cities with high levels of nationalism. Using offline survey data from
was correlated with higher perception of electoral fraud during the 2011 parliamentary
election, while being on VK or Odnoklassniki did not have such an effect.

The Russo-Ukrainian war

The Russian invasions in Ukraine in 2014-15 and in 2022 and the following war
increased the use of online data sources in research on Russia. This could be explained
by restrictions on field work in the country, government censorship of the information
related to the war and the lack of trust to traditional surveys in the context of the war



and increasingly repressive state. | review four strands of research in this section: a) on
the public opinion and attitudes to the war in Russia, b) on military casualties, c) on
political communication during the war, d) on the consequences of the war for Ukraine.
This research was conducted not only by academics, but also by data journalistsin a
number of Russian independent media outlets where the research and publication
cycles are shorter compared to the academia and the public impact is arguably higher.

There have been several traditional surveys (including by independent and antiwar
organisations) showing high levels of public support for the war in Russia. The question
is to what extent these surveys can be trusted given that they were conducted in the

for the war in Russia. List experiments are a technique for indirect measurement of
sensitive indicators (Rosenfeld, Imai, and Shapiro 2016). They found that when asked
directly, 71% of respondents supported the war (in a non-nationally representative
sample), while in the list experiment this share dropped to 61%. However, note the
methodological critique of using list experiments in Russia that argues that they are
subject to the artificial downward bias in the estimates (Frye et al. 2023).

(https://toloka.ai), an online crowdsourcing platform similar to Amazon Mechanical
Turk. Mechanical Turk has been actively used by researchers (mostly in the US); Toloka
2023, Toloka used to be part of Yandex, a Russian digital giant, but it has since become
independent and re-focussed on the international audience. Yandex has been
developing a similar tool, Yandex.Tasks (https://tasks.yandex.ru). Some other online
experiments conducted in Russia employed Yougov (Krishnarajan and Tolstrup 2023)
and Cint (Alyukov and Zavadskaya 2024) panels. Other studies recruited participants via
ads on VK and Facebook (Bryanov et al. 2023; Shirikov 2024).

identify and compare the characteristics of pro-war and anti-war users in Russia
(among those who publicly expressed their views, with the data from about 10,000 user
profiles). Then she created a machine learning classifier that predicted the attitudes to
war of a user from their subscriptions to VK groups. This classifier was applied in
clusters and estimate the pro-war sentiment in each of them. This study also looked at
the network structure of pro-Kremlin pages that disseminated pro-war propaganda.
Some of these studies were published in Novaya Gazeta Europe allowing them to reach

public posts on VK posted in February-June 2022 to explore how the war was perceived
by VK users.

10


https://tasks.yandex.ru/

Unsurprisingly, neither Russian nor Ukrainian governments provide reliable data on war
casualties. For Russia, a group of volunteers created a crowdsourcing project that
crawled the social media (along with using other data sources) to collect the names of
the Russian military who died in Ukraine. The project was supported by two media
organisations, the BBC News Russia and Mediazona. At the time of writing (March
2025), about 96,000 names were collected, which provides the lowest bound for the
estimates of the Russian losses (Mediazona 2022). In 2025, the data were made public
(https://200.zona.media, accessed in March 2025). For Ukrainian fatalities, similar
projects include UALosses (https://ualosses.org/, about 132,000 deaths recorded by
March 2025) and War Tears (https://wartears.org, about 66,000 deaths recorded by
March 2025; War Tears likely overestimates Ukrainian losses in the statistical model
estimate ethnic and regional inequalities in the Russian fatalities showing that some
regions and ethnic categories were heavily overrepresented.

The consequences of the war for Russia included mass outmigration to other countries
(both of the individuals with anti-war views and people escaping mobilisation) and
(2024) analysed Yandex search data to look at the trends and patterns of immigration
intentions in Russia post-2022. OVD Info, an independent human rights project,
collected and provided public access to the data on individuals persecuted in Russia for
political reasons, containing about 5,000 cases since 2012, as in March 2025
(https://ovd.info/politpressing).

Telegram channels became prominent during the war and often offered a more detailed
narrative than the traditional media, especially in the pro-war segment (Russian

and applied structural topic modelling to analyse them. He found that the governors
who were weaker politically, from less economically developed regions with high
mobilisation rates were more likely use war-related messages in their public
communication.
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Researchers also used data from TikTok, a growing social media platform focussing on
short video clips. Recently, TikTok introduced an API for researchers (see Table 1); in

representations of Stalin on Tiktok.

Although research on the consequences of the war in Ukraine is not in the realm of
Russian studies, it is worth mentioning in this sections the studies that applied the
advertising data, combined with the administrative data on the population size and
migration, to estimate that about 5 million Ukrainians were internally displaced in the
and VK data to show the shift from using the Russian language to Ukrainian in Ukraine,
both in 2014-22 and especially after February 2022 (also see Kulyk (2024) documenting

ban in Ukraine in 2017 as a natural experiment and showed that the ban did indeed lead
to reduced VK activity in mainland Ukraine compared to Crimea.

Conclusion

With the advance of computational social science, the use of data that can be collected
online and analysed with modern computational and statistical methods has been
rapidly spreading in the social sciences. It is even more relevant for Russia and other
authoritarian countries where access to traditional social science research methods
may now be difficult. As usual, new digital data sources and methods bring both
advantages and disadvantages that | reviewed earlier in this paper. There are several
limitations of these data that are worth discussing in more detail.

First, it is the representativeness of the data. Traditionally, social scientists relied on
research methods based on probability sampling (i.e. sampling where all units in the
population have a known non-zero probability to be selected). This was considered the
best method to ensure that the data were representative for the entire population. In
quantitative research on Russia, we normally used nationally representative samples
(unless focusing on a specific region or subgroup) from surveys conducted either face-
to-face or on the telephone. The use of digital trace data is a deviation from this
principle. Not everyone in Russia is a regular internet user, and not every internet user is
active on the websites where the data are collected. However, about 80% of Russians
now have regular internet access, with 60% using the social media (VK, Odnoklassniki,
Youtube, etc.) on the daily basis (Levada 2024). When it comes to younger and middle-
aged people, the internet and social media access is almost universal. Arguably, the
coverage is not fundamentally different then compared to the usual face-to-face and
telephone surveys with their high non-response rates. However, more methodological
work needs to be done to show whether and how findings based on the digital trace
data can be extended to the Russian population, given the self-selected nature of the
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data. This is similar to working with online survey data where methodological advances
have been made in the last two decades (Couper 2017).

Another issue with online and social media data is ethical concerns. The use of data
collected from the Russian social media and other websites remains in the ethically
grey zone. For example, VK’s API provides access to a lot more data compared to
Facebook and other Western social media websites. However, getting informed consent
from VK users to utilise their data for research is usually not possible (due to the volume
of the data), and VK would not directly endorse using their data for research purposes
(although wouldn’t prohibit this either). Using leaked data sets containing personal
information is even more controversial as this may directly violate the Russian (and
international) data protection legislation. Practically, this should not prevent
researchers from conducting online data collection and using publicly available data
sets, but all such studies must be subject to review by ethics committees in the UK and

The availability of digital trace data can change rapidly. Twitter / X data used to be widely
utilised for social research; this changed after the purchase of the social media
platform by Elon Musk when fees for data collection were introduced. Facebook data
availability was also restricted for data protection reasons. Currently, much of digital
trace research on Russia uses the VK API. It still offers wide opportunities for data
collection at the time of writing (March 2025), but this can change in the future. After
February 2022, the Russian government has been consistently trying to limit the use of
Western social media platforms and services in the country. The internet service
providers were required to block access to Twitter, Linkedln, Facebook and Instagram
government promoting the local alternative, RuTube. While restrictions and bans can be
avoided by tech savvy Russians by using the virtual provide networks (VPN), this further
reduces the representativeness of the data that can be collected on these platforms.
Further restrictions can be introduced — or dropped - at any time. This may limit
opportunities for digital data collection in Russia; however, it is hard to imagine that the
bans and regulations would eliminate them completely (even in the absence or
restrictions of APIs the data can often be scraped).

To conclude, I’'ll outline some promising directions for future research with digital data
in Russia. First, while applying research designs with data collected from the social
media only may certainly lead to interesting research findings, often the best studies
use designs where the social media data are matched with external data sets, for
survey data in the case of VK). The reason is that social media data do not necessarily
contain all the information necessary to answer research questions at hand, and
surveys may significantly enhance these data. Of course, this requires having
capabilities to commission and conduct surveys in Russia, which is at the time of
writing became difficult. Before the war, Western researchers would normally use
Russian pollsters for data collection, but currently this is complicated both for practical
and political reasons.
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Second, conducting online experiments (including survey experiments) is a promising
area of research, especially when the focus is on identifying causal relationships.
Currently participants from Russia can be found on some platforms, but creating a new
online panel available for academics (similar to Prolific?) would increase opportunities
for experimental research.

Finally, digital research in Russia would benefit from further development of data
collection and storage capacities. Currently, individual researchers collect and store
data for their research. Some of these data sets are publicly available, while others are
not. A more centralised and systematic approach to digital data collection and archiving
(perhaps in the form of a digital data archive for Russia) would be beneficial.
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